NOTE

A NOTE ON THE SHARP CONCENTRATION OF THE CHROMATIC NUMBER OF RANDOM GRAPHS

TOMASZ ŁUCZAK

Received February 2, 1989

Let G(n,p) be a random graph on n vertices in which each possible edge is present independently with probability p = p(n). We say that the chromatic number of G(n,p) is concentrated in width s for p = p(n) if for some function u = u(n) we have

$$\lim_{n \to \infty} \operatorname{Prob}(u \le \chi(G(n, p)) \le u + s) = 1.$$

The question of the width of concentration of the chromatic number $\chi(G(n,p))$ was first considered by Shamir and Spencer in [3] who, among others, proved also the following result on the concentration of the chromatic number in sparse random graphs.

Theorem 1. If $p(n) < n^{-5/6-\epsilon}$, $\epsilon > 0$, then the chromatic number of G(n,p) is concentrated in width 3.

In this note we improve original argument of Shamir and Spencer and show that in the Theorem above 4 can be replaced by, clearly the best possible, 1. Thus our main result goes as follows.

Theorem 2. If $p(n) < n^{-5/6-\epsilon}$, $\epsilon > 0$, then the chromatic number of G(n,p) is a.s. two point concentrated.

The proof of Theorem 1 in [3] is based on two facts. The first one, the "meat" of the paper, is shown using martingales technique whereas the second follows easily from the first moment method.

Fact 1. Let k = k(n) be such that

(*)
$$\operatorname{Prob}(\chi(G(n,p)) \ge k) > \frac{1}{\log \log n} .$$

Then a.s. all but at most $\log^2 n \sqrt{n}$ vertices of G(n, p) can be properly coloured using k colours.

Fact 2. Let $0 < \epsilon < 0.1$ and d(n) = np(n). Then a.s. each subgraph H of G(n, p) on less than $nd^{-3(1+2\epsilon)}$ vertices has less than $(1.5 - \epsilon)|H|$ edges.

Remark. Actually, Fact 1 as stated above does not appear in the paper of Shamir and Spencer who use an analogous but more complicated result. Here we follow a suggestion of Alan Frieze who ingeniously noticed that Fact 1 is an immediate consequence of Shamir and Spencer's concentration theorem.

One can easily see that the assertion of Theorem 1 follows from Facts 1 and 2. Indeed, from Fact 1 a.s. $n - \log^2 n \sqrt{n}$ vertices can be coloured with k colours and Fact 2 implies that each subgraph H with all vertices uncoloured has the minimal degree less than three, so, all uncoloured vertices can be coloured using at most three additional colours (see, for example, Bollobás [1] Theorem V.1).

We shall show how to use the fact that G(n,p) is very sparse more efficiently and colour all vertices of G(n,p) using only one extra colour.

Proof of Theorem 2. If $np(n) \to 0$ then a.s. G(n,p) consists of isolated trees so $\chi(G(n,p)) = 1$ or 2. For $1/\log n < np(n) < 1.0001$ G(n,p) a.s. contains at least one edge and no subgraphs with minimal degree larger then 2 (see Luczak [2]) so $\chi(G(n,p)) = 2$ or 3. Thus we may assume that np(n) > 1.0001 and, since then G(n,p) a.s. contains an odd cycle, $\chi(G(n,p)) \geq 3$.

Let $1.0001 \le d(n) = np(n) < n^{1/6-\epsilon}$ and $k = k(n) \ge 3$ be a number for which (*) holds. From Fact 1 it follows that a.s. all vertices of G(n,p) outside some set S, $|S| < s_0 = \log^2 n \sqrt{n}$, can be coloured by k colours. We shall prove that a.s. $\chi(G(n,p)) \le k+1$.

Construct an increasing sequence $\{U_i\}_{i=0}^m$ of subsets of G(n,p) setting $U_0 = S$ and for given U_0, U_1, \ldots, U_i define U_{i+1} as $U_i \cup \{w_1, w_2\}$ where $w_1, w_2 \notin U_i$ are joined by an edge and both of them are adjacent to some vertices of U_i . If such pair w_1, w_2 does not exist finish construction with m = i.

Now note that $m \leq m_0 = \log^3 n \sqrt{n}$. Indeed, otherwise a subgraph induced by U_{m_0} would have

$$\bar{s} = s_0 + 2m_0 \le \log^4 n \sqrt{n} < nd^{-3(1+2\epsilon)}$$

vertices and at least $3m_0 \ge (1.5 - \epsilon)\bar{s}$ edges contradicting Fact 2.

Hence there exists a set U_m , $U_m \supseteq S$ such that

$$|U_m| \le m_0 + s_0 < nd^{-3(1+2\epsilon)}$$

and the set $N(U_s)$ of all neighbours of U_m is independent. Thus colour all vertices outside $U_m \cup N(U_m)$ using k colours, $N(U_m)$ with colour k+1 and U_m using colours 1, 2 and 3 (since U_m is small so, by Fact 2, the subgraph induced by it in G(n, p) contains no subgraphs H with $\delta(H) \geq 3$ and thus is 3-colourable).

References

- [1] B. Bollobás: "Graph Theory An Introductory Course", Springer-Verlag, 1979.
- [2] T. Luczak: The size and connectivity of the k-core of a random graph Discrete Math, to appear.

[3] E. Shamir, and J. Spencer: Sharp concentration of the chromatic number on random graphs $G_{n,p}$ Combinatorica 7 (1987), 124-129.

Tomasz Łuczak

Department of Discrete Mathematics Adam Mickiewicz University Poznań, Poland tomaszeplpuam11.bitnet